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Abstract
A lattice Boltzmann model is considered in which the speed of sound can be
varied independently of the other parameters. The range over which the speed
of sound can be varied is investigated and good agreement is found between
simulations and theory. The onset of nonlinear effects due to variations in the
speed of sound is also investigated and good agreement is again found with
theory. It is also shown that the fluid viscosity is not altered by changing the
speed of sound.

PACS numbers: 47.11.−j, 43.25.+y

1. Introduction

The lattice Boltzmann model (LBM) is a numerical technique for fluid simulation which has
become increasingly popular in recent years [1–4]. The LBM originates from the lattice gas
model (LGM) [5–8] where fluid particles are constrained to move on a regular lattice such
that their collisions conserve mass and momentum. The particles are further constrained to
move with unit velocity and with a maximum occupancy of one particle per grid direction
per grid site. The evolution of the LBM from the lattice gas model involved a number of
key developments. The Boolean particle number (1 if a particle is present and 0 otherwise)
was replaced by a real number, later recognized as the distribution function, representing an
ensemble average of the particle occupation [9]; this removed the noise associated with the
relatively small number of fluid particles represented in the LGM. Obtaining an ensemble
average of the particle collisions is not straightforward but the process was simplified to
depend only on the link direction [10] and the isotropy of the model [11]. Finally, the particle–
particle collisions were replaced by considering the distribution functions relaxing towards a
Maxwell–Boltzmann equilibrium distribution [12].

The LBM is referred to as an incompressible technique because the LBM scheme can be
shown to satisfy the incompressible Navier–Stokes equation in the limit that the density, ρ,
does not vary in space or time. However, when applying the LBM, there is no restriction on
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the density to remain constant and in many applications the density will vary in space and/or
time. In practice, the ‘incompressible’ nature of the LBM is interpreted as requiring that any
density variations are small or that the density varies only slowly in space and time. In this
limit it is possible to simulate phenomena such as acoustic waves where a density variation is
required, provided the variation is small [13–15].

In the LBM, pressure is defined through the equation of state, see for example [2],
p = c2ρ, where c is the speed of sound which takes a fixed value in any simulation, dependent
only on external factors such as the shape of the simulation grid. Thus we see that the speed
of sound controls the relationship between the density and the pressure and therefore the
compressibility of the fluid. To model fluids with different compressibility we require to be
able to change the speed of sound in the simulation. Here we consider a model with a variable
speed of sound and investigate the nonlinear aspects of sound-wave propagation.

2. The lattice Boltzmann model

In this section we briefly consider the standard LBM on a square grid in two dimensions. In
the LBM the distribution functions, fi(x, t), for i = 0–8 evolve on a regular grid according to
the Boltzmann equation [16], as

fi(x + ei , t + 1) − fi(x, t) = − 1

τ
(fi − f i), (1)

where ei = (cos[π(i − 1)/2], sin[π(i − 1)/2]) for i = 1–4, and ei = √
2(cos[π(i −

9/2)/2], sin[π(i − 9/2)/2]) for i = 5–8 are link vectors on the grid and e0 = (0, 0). The
left-hand side of equation (1) represents streaming of the distribution function from one site to
a neighbouring site. The right-hand side is the Bhatnagar, Gross and Krook (BGK) collision
operator [12, 17, 18]. The equilibrium distribution function f i is given by [16]

f i = wiρ
[
1 + 3ei ·u + 9

2 (ei · u)2 − 3
2u2], (2)

where the fluid density, ρ, and velocity, u, are found from the distribution function as

ρ =
8∑

i=0

fi and ρu =
8∑

i=0

fiei (3)

and where w0 = 4/9, wi = 1/9 for i = 1–4, and wi = 1/36 for i = 5–8. The relaxation time,
τ , determines the rate at which the distribution functions relax to their equilibrium values; it
determines the fluid viscosity, ν, as

ν = (2τ − 1)

6
. (4)

Equation (1) can be modified by the addition of an extra source term. This approach has
been used to implement a body force [19] and also to simulate non-ideal equations of state
such as phase separation [20].

3. A lattice Boltzmann model with a variable speed of sound

One method for achieving a variable speed of sound was proposed by Alexander et al [21]
who considered a model on a hexagonal grid with an altered equilibrium distribution function
in which the ratio of ‘rest particles’ (f0) to ‘moving particles’ (fi, i �= 0) can be altered.
Simulations performed using this model [21] showed that the speed of sound can be varied
between 0 and approximately 0.65 with good agreement between theory and simulation for
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speed less than approximately 0.4. Above 0.4 there is some deviation between theory and
simulation. In this model the viscosity was also found to be a function of the variable speed
of sound.

An alternative approach was proposed by Yu and Zhao [22]. They introduced an attractive
force which produced a variable speed of sound which was dependent on the amplitude of the
introduced force. The model was verified by measuring the Doppler shift and the Mach cone
for Mach numbers less than and greater then unity, respectively.

Here we consider the following LBM:

fi(x + ei , t + 1) − fi(x, t) = − 1

τ
(fi − f i) + 3wiα∇ρ · ei , (5)

where f i and wi are defined as previously and the additional term on the right-hand side of
equation (5) represents a body force α∇ρ, see for example [19]. This is effectively the same
as the model of Yu and Zhao [22], except that the forcing term is expressed explicitly as
proportional to the density gradient and the amplitude term, α is not restricted to be positive.
Performing a Chapman–Enskog expansion [8] we can write the Navier–Stokes equation in the
form

∂tuα + uβ∂βuα = − 1

ρ
∂α

(
c2

1 − α
)
ρ + ν∂β(∂αuβ + ∂βuα), (6)

where

ν = 2τ − 1

6
(7)

as before, and we have assumed that the derivatives of ρ can be neglected except where they
appear in the pressure term. This is the Navier–Stokes equation for a fluid which has pressure
p = c2

eρ, where ce is the effective speed of sound which is given by

ce =
√(

c2
1 − α

)
. (8)

Thus by introducing an additional term to the Boltzmann equation which acts as a body force
proportional to the density gradient, we have included a force which increases or decreases
(depending on the sign of α) the pressure forcing term in the Navier–Stokes equation, and
hence the speed of sound in the model.

A number of models, based on the cellular automata (CA) approach of the LGM, have also
been applied to simulate acoustic waves as well as Burgers’ equation. Mora [23] introduced
the phononic lattice solid model which obeyed a Boltzmann equation and satisfied the acoustic
wave equation in the macroscopic limit. The Boltzmann equation was solved using a finite-
difference scheme. This model was further developed [24] in the phononic lattice solid by
interpolation model in which the particle number densities move along the lattice links in
the same manner as the distribution functions in the LGM and LBM. Unlike the lattice gas
particles they travel at different speeds and so, in general, do not arrive at a grid site after each
time step. The number densities are therefore interpolated to find the value at each site.

CA models for Burgers’ equation have also been considered. The model of Boghosian
and Levermore [25] was based on the LGM approach and was shown to follow the solution
of Burgers’ equation. The convergence of the model was also established [26]. Following
the development of the LBM from the LGM [9–11], Elton [27] considered a CA model for
Burgers’ equation based on the mean occupation number rather than discrete particles. The
model compared favourably with a finite difference solution of Burgers’ equation. A quantum
lattice gas model [28] and an intrinsically stable entropic model [29] have also been proposed
recently. Each of these models provides a simulation method which satisfies Burgers’ equation.
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Figure 1. The effective speed of sound, ce as a function of the forcing magnitude α.

This is different to the model investigated here which satisfies the Navier–Stokes equation and
is also capable of simulating nonlinear acoustic waves whose behaviour, for the case α = 0,
has been shown to be in good agreement with Burgers’ equation [14]. This means that it is
capable of simulating the interaction between acoustic waves and fluid flow, see for example
[15, 30–32].

4. Numerical simulations

The variation in the speed of sound was investigated in the following simulations of plane
acoustic wave propagating in an unbound media. This is effectively a one dimensional problem
so a grid was used with only four points in the y-direction. The grid had L points in the
x-direction and was initialized with zero velocity and unit density. Periodic boundary
conditions were applied at y = 0 and y = 4. At x = 0 a boundary condition was applied in which
the density was varied in a sinusoidal manner with a period of 500 time steps, the velocity at
this grid boundary was maintained at zero. At y = L a boundary condition of ρ = 1 and u = 0
was applied. L was selected to be large enough so that the density disturbance does not reach
x = L during the measurement window. From these simulations the speed of sound was found
in two ways: (1) from the time taken for the wave to pass between two points at a known
separation and (2) since we are dealing with a low amplitude plane harmonic wave, ce can be
derived from [33] u(x∗, t∗)/ce = [ρ(x∗, t∗) − ρ0]/ρ0, where u(x∗, t∗) and ρ(x∗, t∗) are the
fluid velocity and density, respectively, at some position x∗ and time t∗; here we selected x∗

and t∗ such that they correspond to a pressure and velocity maximum. The results are shown
in figure 1 where there is excellent agreement between the measured values of ce and the
theoretical values given by equation (8) over a range of α. At α = 1/3 we have ce = 0 giving
an upper limit for α. Now α = −2/3 gives ce = 1 which would appear to be an upper limit
since this is the speed with which the distribution functions propagate and so is the maximum
speed information about the density, pressure and velocity can be transmitted through the fluid.
Initial simulations were performed using a simple forward difference scheme to calculate the
pressure gradient. In this case the model became unstable as ce approached unit, as would be
expected. When a central difference technique was applied to calculate the density gradient
the model was found to remain stable as ce approaches unity. Indeed it was found to remain
stable for higher values of ce (α < − 2/3) and the simulated density waves were observed
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Figure 2. The nonlinear development of the sound wave for ce = 0.2 over the first twenty
wavelengths. Also shown for comparison is the numerical solution of Burgers’ equation (+) and
the LBM simulation of a sound wave with ce = 0.9 at x = 45λ (diamonds).

to propagate with ce > 1. The transfer of information at a speed greater than unity can be
understood with the introduction of a central difference scheme to calculate the ‘pressure’
forcing term. Consider a density distribution where ρ(x) = ρ0 everywhere at t = 0, except for
ρ(x0) = ρ0 + δρ. Then at x = x0 + 1 the density gradient (calculated using a central difference
scheme) will be non-zero. In the case of α < 0 this will give a forcing term that will cause
the value of the distribution function travelling in the positive direction at x0 + 1 to increase.
This information (about a density increase at x0) will then be passed on to x0 + 2 at t = 1 by
the streaming action. As seen in figure 1 this is a limited effect; however, it suggests that LB
schemes in which the speed of sound is significantly greater than unit may be possible if a
longer range action is applied. The largest value of ce which was observed to remain stable
was ce = 1.125. The validity of simulations with ce > 1 has not been established and requires
further investigation. The remainder of the simulations presented here has ce < 1.

To further investigate the effectiveness of the model two progressive sound waves with λ =
4000 were initialized with the same velocity amplitude: u(x, t = 0) = u0 sin(kx), v(x, t =
0) = 0 and density profile ρ(i)(x, t = 0) = ρ

(i)
0

(
1 + u0

/
c(i)
e

)
sin(kx), for i = 1, 2, where c(i)

e is
found from α(i) with α(1) = 0.2933 and α(2) = −0.476 67. This gives c(1)

e = 0.2 and c(2)
e = 0.9

such that c(2)
e

/
c(1)
e = 4.5. The ambient density ρ

(i)
0 is also free to be varied; however, in the

simulations we used ρ
(1)
0 = ρ

(2)
0 = 1 and u0 = 0.002. For these two waves we can calculate

the shock development distance given by

σ (i) = 1

εM(i)k
, (9)

where M(i) = u
/
c(i)
e is the Mach number, k = 2π/λ is the wavenumber and ε = 1. This

is the distance over which an initially sinusoidal wave in an inviscid fluid will develop into
a discontinuous wave with a sawtooth shape. Here we have σ (1) � 16λ and σ (2) � 72λ so
we expect wave (1) (in the fluid with the lower speed of sound) to exhibit stronger nonlinear
effects than wave (2).

Following [14], periodic boundary conditions were applied on all grid boundaries and the
waves were allowed to propagate. Figure 2 shows the normalized velocities u′ = u/u0; plotted
as a function of φ = ω(t − x/ce) after the waves has propagated distances of 5λ, 10λ and
15λ. Here ω is the angular frequency of the acoustic wave. It can clearly be seen that wave (1)
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Figure 3. Amplitude of the spectral components for wave (1) and wave (2) calculated over just
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Figure 4. The propagation of wave (2) for three selected values of τ . Also shown is the exponential
decay rate predicted by linear theory.

exhibits strong nonlinear behaviour over the first twenty wavelengths. Also shown in figure 2
is the numerical solution of Burgers’ equation [14] which describes the wave form in a viscous
fluid in terms of a truncated sum of N harmonics. Good agreement is observed for x = 5, 10
and 15 λ. For x = 20λ a suitable value of N could not be found to give a smooth profile.
Even at large N oscillations were observed on the wave form around φ = 0 and φ = ±1.
For this reason the solution of Burgers’ equation is only shown away from these points for
x = 20, where there is again good agreement with the Boltzmann simulations. The LBM
simulation of wave (2) at x = 45λ

(=10
(
c(2)
e

/
c(1)
e

)
λ
)

is also shown in figure 2 for comparison.
The wave form is similar to that for wave (1) at x = 10λ as would be expected from
equation (9) since both waves were run with a relatively low viscosity (ν = 0.01). A
comparison with wave (1) is given in figure 3 which shows the amplitudes, an, of the
fundamental (n = 1) and higher (n > 1) harmonics. The results in figure 3 were obtained by
performing a fast Fourier transform on the velocity between x = 14λ and x > 20λ where the
smallest number of point which was an exact multiple of 2 was used.

Figure 4 shows the long-term behaviour of wave (2) for three different fluid viscosities
given by ν = 1/30, 1/2 and 7/6 , the value of λ was 400. Relatively large values of τ were
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Figure 6. The fluid viscosity calculated from the decay of a wave after 100 periods with α = −0.6,
as a function of the relaxation parameter. The solid line represents the theoretical expression.

selected to ensure that the wave was damped rapidly. The results are in good agreement with
the exponential decay rate predicted by linear theory, see [13, 33, 34], which is also shown.

The long-term behaviour of wave (2) was also considered in fluids with a lower viscosity.
The decay rate per unit time is independent of the speed of sound and depends only on the
wavelength of the wave and the viscosity of the fluid. This is shown in figure 5 which depicts
wave (2) for a range of α values after around 100 periods for the wave with α = −0.65. It
is clear from figure 5 that the damping rate is the same for each value of α, including α = 0
which corresponds to the standard LBM with no additional body force. The viscosity of the
fluid was obtained from the simulations as

ν = − 1

k2t
ln

(
ut=100T

ut=0

)
(10)

and is shown in figure 6 for α = −0.6 for values of τ between 0.501 and 0.9. Figure 6 shows
good agreement between the measure viscosity and the theoretical value at large viscosities.
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At lower viscosities their is some deviation. For α = −0.6, the largest difference observed
between the simulated wave amplitude after 100 periods and the theoretical value was less
than 4%. It is well known that the LBM becomes unstable as τ → 0.5 with noise being
introduced into the simulation which eventually becomes unstable. This has been observed
elsewhere, for example [35] where a filter was introduced to reduce the noise. Here a filter
was not required and the introduction of the body force term was not observed to significant
alter the onset of instabilities. The good agreement between the simulations and the theory
indicates that the introduction of a variable speed of sound using the method proposed here
does not effect the viscosity of the fluid, as predicted by equations (6) and (7).

5. Conclusions

A new lattice Boltzmann model has been devised in which the speed of sound can be varied.
This has been demonstrated in a number of simulations in which the speed at which a
disturbance propagates in a fluid was found to agree with the theoretical speed of sound.
Further, it has also been shown that the nonlinearity of a pressure wave depends not only on
its amplitude but also on the speed of sound in the medium through which it is propagating,
as would be expected, and good agreement was found with the numerical solution of Burgers’
equation. Compared to a previous model [21], the present model has a larger range over
which the speed of sound can be varied and shows better agreement with theory over the full
range. Additionally, the method by which the variable speed of sound is introduced does not
change the viscosity of the fluid. The speed of sound is varied in the new model by a free
parameter, α, which was kept constant in space and time during the simulations presented
here. This is not, however, a fundamental requirement and it is envisaged that this model
could be applied such that the speed of sound varies within the simulation. For example, in
a simulation of a liquid–gas or a binary fluid mixture, the speed of sound could be varied
as a function of the fluid species. This could be done in much the same way as a species-
dependent relaxation time has been used to simulate binary fluids with different viscosities,
see for example [36]. Alternatively, in a single-phase fluid simulation, the speed of sound
could be varied in a pre-determined manner to account for an external influence, for example
a temperature gradient or an acoustical lens. The model can also be applied to simulate fluids
with different compressabilities which extends the range of application of the LBM.
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